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a b s t r a c t

A solution of the problem of the oscillations of a rectangular plate with free edges, which enables exact
values of the eigenfrequencies and approximate eigenmodes to be obtained, is given. The use of the
results obtained to design plates on an elastic foundation is proposed. The calculation is carried out by
the Ritz method in which the eigenmodes of the plate obtained are taken as the coordinate functions,
which considerably speeds up the process of obtaining a solution compared with existing approaches.
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Using the linear technical theory of the bending of plates 1 we consider the flexural natural oscillations of a rectangular Plate (−a ≤ x ≤ a,
−b ≤ y ≤ b) with free edges having a cylindrical stiffness D and Poisson’s ratio of the material �p. The equation of flexural oscillations has
the form

(1)

The static boundary conditions are1,2

(2)

where W(x,y) are the deflections of the plate, m is the distributed mass and � is the eigenfreqency.
Without loss of generality, we will consider oscillations that are symmetrical about the x and y axes. We will change to the dimensionless

variables x̄ = x/a, ȳ = y/b. Henceforth, omitting the bar over x and y, we will represent the deflections of the plate in the form of the sum
of two particular solutions3 of the equation ��W − �W = 0:

(3)

Substituting expression (3) into boundary conditions (2) and expanding the determinant, we obtain the following transcendental
equations for determining � and �, well-known from the theory of beam functions4

(4)

Substituting the solutions of Eqs (4) into the equation of oscillations (1) we can write the following expression for the eigenfrequencies,
symmetrical about the x and y axes, in the form well-known from the reference books1,5

(5)
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Table 1

Characteristics of the oscillations Eigenfunctions Transcendental equations and roots

Symmetrical about the x and y axes cos �ix cos �ky − sin �i sin �k
sh �ish�k

ch �ixch �ky x+=(�i)=0
x+=(�k)=0
�1=0=�1

�2=2.3650=�2

�3=5.4978=�3

. . .
Symmetricals about the y axis cos �ix sin �ky − sin �i cos �k

sh �ich�k
ch �ixsh �ky x+(�i)=0

x−(�k)=0
�1=0
�2=3.9267
�3=7.0686
. . .

Symmetricals about the x axis sin �ix cos �ky − cos �i sin �k
ch �ish�k

sh �ixch �ky x−(�i)=0
x+(�k)=0

Antisymmetricals about the x and y axes sin �ix sin �ky − cos �i cos �k
ch �ich �k

sh �ixsh �ky x−(�i)=0
x−(�k)=0

To determine the eigenmodes we will use the condition for the torques at the corners of a rectangular plate with free edges to be equal
to zero6

(6)

From condition (3) this leads to the expression

which enables us to represent the ik-mode, symmetrical about the x and y coordinate axes, in the form

(7)

The eigenfrequencies and eigenmodes, symmetrical and antisymmetrical about one and two coordinate axes, can be obtained similarly.
In Table 1 we present expressions for the eigenmodes and the forms of the transcendental equations for determining the eigenfre-

quencies using formula (5). In Fig. 1 we show three eigenmodes of flexural oscillations of a rectangular plate for a = 1 m and b = 2 m. It
should be borne in mind that the first eigemodes of a rectangular plate with free edges correspond to the values � = � = 0 and to displace-
ments of the plate as a rigid body. In Table 2 we compare the values obtained for the dimensionless eigenfrequencies of a square plate
ω̄k = ωk

√
ma4/D(k = 2, 3, 4) with Ritz’s results7 and the Kantorovich–Krylov results.8

Note the following.
1◦. The eigenfrequencies and eigenmodes obtained are independent of Poisson’s ratio of the plate material.
2◦. A breakdown in the orthogonality properties of the eigenmodes obtained is observed, and the value of the error decreases as the

frequency corresponding to this mode increases. Thus, for a square plate, the integral

representing the orthogonality property, is equal to zero when i = 1 and k = 2, 3, 4, is equal to 0.017812 when i = 2, k = 3, is equal to 0.0044
when i = 2 and k = 4, and is equal to 0.00821 when i = 3 and k = 4.

3◦. For a rectangular plate with free edges, the eigenfrequencies, defined by (5), are obviously obtained exactly. However, it is not
possible to determine the eigenmode exactly in this case using the technical theory of the bending of plates, since it is necessary to satisfy
exactly three boundary conditions on the free edge of the plate,9 which, in the approximate theory of the bending of plates are replaced
by two conditions, that combine the action of the transverse force and the toque due to the reduced transverse force. These forces are
integrally in equilibrium and, according to the Saint-Venant principle, they correspond to forces which decrease rapidly from the plate
edge, but in this case the property of orthogonality of the modes obtained breaks down.

Table 2

Frequencies �̄2 �̄3 �̄4

Characteristic of the oscillation Symmetrical about
the x and y axes

Symmetrical about the y axis and
Antisymmetrical about the x axis

Antisymmetrical about the
x and y axes

According to Ritz7 14.10 20.56 23.91
Kantorovich–Krylov8 12.43 – –
Results of calculations 11.19 21.91 30.83
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Fig. 1.

We will consider the use of the results obtained for a static calculation of a rectangular plate on a Winkler foundation acted upon by a
centrally applied concentrated force. The equilibrium equation of the plate has the form10

(8)

where q(x,y) is the vertical load on the plate and k is the stiffness coefficient of the Winkler foundation.
We will specify the equation of the plate deflection in the form (7)

(9)

Substituting expression (9) into Eq. (8) and differentiating, we obtain the equality

(10)

We multiply both sides of this equation by T2m(x)T2n(y)√
1−x2

√
1−y2

, where T2m(z) is a Chebyshev polynomial of the first kind,11 and we integrate

over x from −1 to +1 and over y from −1 to +1. In this case the concentrated force is distributed over the area of an infinitesimal rectangle at
the origin of coordinates. We obtain a system of linear algebraic equations in the unknown Cik. It can be shown,8 that the system obtained
is regular and the set of free terms has an upper limit, and hence it can be solved by the truncation method.

For example, we will consider a reinforced concrete rectangular plate of width a = 1 m, length b = 2 m and thickness 0.4 m on a Winkler
foundation with a stiffness coefficient k = 2 × 107 N/m3. We obtain ka4/D = 0.1215 and

In Fig. 2 we show the deflection surface of this rectangular plate on a Winkler foundation.
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Fig. 2.
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5. Korenev BG, Rabinovich IM, editors. Handbook of Building Dynamics. Moscow: Stroiizdat; 1972.
6. Kiselev VA. The Design of Plates. Moscow: Stroiizdat; 1973.
7. Timoshenko S. Vibrations Problems in Engineering. Toronto etc.: Nostrand; 1955.
8. Kantorovich LV, Krylov VI. Approximate Methods of Higher Analysis. New York: Interscience; 1958.
9. Aleksandrov AV, Potapov VD. Principles of the Theory of Elasticity and Plasticity. Moscow: Vyssh. Shkola; 1990.

10. Gorbunov-Posadov MI, Malikova TA, Solomin VI. The Design of Structures on Elastic Foundations. Moscow: Stroiidat; 1984.
11. Gradshteyn IS, Rizhik IM. Tables of Integrals, Sums, Series and Products. San Diego: Academic Press; 2000.

Translated by R.C.G.


	Eigenfrequencies and modified eigenmodes of a rectangular plate with free edges
	References


